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On computing accurate singular values and eigenvaluesi
of acyclic matrices 

Dist

James W. Demmel *

Computer Science Division and Department of Mathematics
University of California

Berkeley, California 94720

William Graggf
Department of Mathematics
Naval Postgraduate School
Monterey, California 93943

Abstract

It is known that small relative perturbations in the entries of a bidiagonal matrix
only cause small relative perturbations in its singular values, independent of the values
of the matrix entries. In this paper we show that a matrix has this property if and only
if its associated bipartite graph is acyclic. We also show how to compute the singular
values of such a matrix to high relative accuracy. The same algorithm can compute
eigenvalues of symmetric acyclic matrices with tiny componentwise relative backward
error. This class includes tridiagonal matrices, arrow matrices, and exponentially many
others.

1 Introduction

In [9] it was shown that small relative perturbations in the entries of a bidiagonal matrix
B only cause small relative perturbations in its singular values. This is true independent

of the values of the nonzero entries of B. This property ju3tifies trying to compute the
shngular values of B to high relative accuracy, and is essential to the error analyses of the

corresponding algorithms [9].
Since this attractive property of bidiagonal matrices is independent of the values of the

jionzero entries, it is really just a function of the sparsity pattern of bidiagonal matrices.

I this paper we completely characterize those sparsity patterns with the property that
independent of the values of the nonzero entries, small relative perturbations of the matrix
ortries only cause small relative perturbations of the singular values. The characterization

*The author was supported by NSF grant ASC-9005933 and DARPA grant DAAL03-91-C-0047 via a
-ubcontract from the University of Tennessee. This work was performed during a visit to the Institute for
Mathenmatics and its Applications at the University of Minnesota.

t~'rih author also acknowledges the Institute for Mathematics and its Applications at the University of
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is simple: a sparsity pattern has this property if and only if its associated bipartite graph
is acyclic.

We define this graph as follows. Let S be a sparsity pattern for m by n matrices; in
other words, S is a list of the entries permitted to be nonzero. Let C(S) be a bipartite graph
with one group of nodes {rl,..., r,,} representing the m rows and one group {cl,..., n}
representing the n columns. There is an edge from ri to ci if and only if Aij is permitted
to be nonzero. (We will sometimes write G(A) instead of G(S), where S is the sparsity
pattern of A.)

We also present another perturbation property of acyclic matrices which is quite strong:
multiplying any single matrix entry by any factor / 0 cannot change any singular value
by more than a factor of / (either up or down).

Sparsity patterns with this property have at most n + m - 1 nonzero entries. There
are a great many such sparsity patterns. Let us consider only m by n sparsity patterns S
which camot be permuted into block diagonal form (this means G(S) is connected). Then
the number of different such sparsity patterns is equal to the number of spanning trees on
connected bipartite graphs with m + n vertices; this number is mn-InM-' [5, p. 381 [3]. If
we only wish to count sparsity patterns which cannot be made identical by reordering the
rows and columns. a very simple lower bound on the number of such equivalence classes is
M,,,- 1,,-I/(n!m!). In the square case n = m, Stirling's formula lets us approximate this
l oeer boulld by ( 2 /(2rn 3), which grows quickly.

sinlce we know the singular values of these acyclic matrices are determined to high
relative accuracy by the data, it makes sense to try to compute them this accurately.
\Ve preselnt a bisection algorithm which does this. The same algorithm can compute the
eigen\value.- of arbitrary "symmetric acyclic" matrices with tiny componentwise relative
iccuracy. \Ve define symmetric acyclicity of a symmetric matrix as follows. Given a sparsity
1pattern .5 of an n by n symmetric matrix, we define a graph G'(S) by taking n nodes, and
ton liecting node i to node j i i if and only if the (ij) entry is nonzero. The symmetric
sparsity pattern S is called "symmetric acyclic" if the graph G'(S) is acyclic. (We will
-sometimies write G'(A) instead of G'(S) where S is the sparsity pattern of A.) The algorithm
QViduateS the inertia of such a matrix by doing symmetric Gaussian elimination, with the
order of elimination determined by a postorder traversal of G'(S).

It summary, the well-known attractive properties of bidiagonal matrices B and symmet-
ric tridiagonal matrices T, that the singular values of B can be computed to high relative
accuracy and the eigenvalues of T computed with tiny componentwise relative backward er-
ror. have been extended to "acyclic" matrices. In the case of computing singular values, we
have showii that this extension is complete: no other sparsity patterns have this property.
\V stronggly suspect that the set of symmetric acyclic matrices is also the complete set of
,ymmetric matrices whose eigenvalues can be computed with tiny componentwise relative
backward error independent of the values of the matrix entries.

Other algorithms for the special case of "arrow" matrices are discussed in [1,2,15,22].
This work generalizes the adaptations of bisection to arrow matrices, and is almost certainly
more stable than the QR based schemes.

The rest of this paper is organized as follows. Section 2 states the perturbation theorem
for the singular values of acyclic matrices, and section 3 proves it. Section 4 shows how
to compute eigenvalues of symmetric acyclic matrices with tiny componentwise relative
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backward error, and applies this to compute the singular values of acyclic matrices to high
relative accuracy. Section 5 give some examples of matrices with acyclic sparsity patterns.
Section 6 discusses algorithms and open problems.

2 Statement of Perturbation Theorem for Singular Values

I this section we define three properties of sparsity patterns of matrices, one about graph
theory and two about perturbation theory. Our main result, which we prove in the next
sectioni, is that these properties are equivalent.

Let A be an m by n matrix with a fixed sparsity pattern S.

Property I G(S) is acyclic.

Property 2 Given sparsity pattern S, there exist positive constants co and C with the
Jollowiny property. Let A be any matrix with sparsity pattern S, and Aij any nonzero entru.
(hoost any Ic< co, and let A' = A except for Aj = Aij(1+c). Then for all singular values

(1 - 4iWi)ak(A) < Ck(A') < (1 + CII)ak(A)

I, othtur words a sufficiently small relative perturbation e in any single matrix entry cannot
C(aI, ( relative perturbation greater than ,c in any singular value.

If p entries of A are simultaneously perturbed, Property 2 can be applied p times to show
no singular value can change by a factor outside the interval from (1-Clel)P = 1-pljIc-O(c 2 )
1o (1 + (Ji )' = 1 + p(I C - 0(0). Property 2 seems rather weak, since it imposes no bounds
on (0 no (. Still, since co and C are independent of the matrix entries, it is actually
deinandiiig quite a bit of S. The last property is even stronger:

Property 3 . Given sparsity pattern S, let A be any matrix with this sparsity, and Aij any
iiuiiZ( ro uiry. Let 0 be any nonzero constant. Let A' = A except for A3j = fAij. Then for
all siingula(r values k(A)

min(jlj[, I-1j)ak(A) <5 ak(A') <5 MaX(I/3, I#-1j)0'k(A)

Property 3 is much stronger than Property 2 because it imposes no limit Co on the size
of the relative perturbation, and because it asserts C = 1, i.e. that the relative change in

the singular values cannot exceed the relative change in the single perturbed matrix entry.
In the case of simultaneous small relative perturbations of size at most /3 = 1 + e in p entries
of A. Property 3 implies that no singular value can change by a factor outside the interval
fronl (I - ciE)p = I - pici + (0) to (1 - 1)- p = 1 + pIlel + (2). Since the maximum number
of nonzeros is m + n - 1, this relative perturbation is bounded by (m + n - 1)1(1 + 0(2).

Our inain result is

Theorem 1 Properties 1, 2 and 3 of a sparsity pattern S are equivalent.

3



Figure 1: Computing D7 and D,

if q is a row node then
suppose q = ri
if ri is the root then

Drii = 1

else
suppose cj is the parent of q
Dr,ii = I1(AjjDc,.ii)

elld
else (q must be a column node) then

suppose q = ej
if C, is the root then

Dj = 1

else
suppose ri is the parent of q
DC,jj = 11(AjjDrii)

end
end if

3 Proof of Perturbation Theorem for Singular Values

The proof of equivalence will consist of the following steps. We already know that Property 3
inplies Property 2, so it will suffice to prove Property 1 implies Property 3, and Property 2
imn)lies Property 1.

Lemma 1 Let A have sparsity pattern S, and suppose G(S) is acyclic. Then there are di-
agoial matrices D, and D, such that each entry of DADc is either 0 or 1. Each diagonal
(try of[D,. or D, is a quotient of monomials in the entries of A. In each monomial each
distinct factor Aij which appears has unit ezponent. Each Aij can appear only in in numer-
ators of nttries of Dr and denominators of entries of D,, or vice versa, in denominators
of ntries of D, and numerators of entries of Dc.

Proof Since G(S) is acyclic, it is a forest of trees. We may consider each tree indepen-
dentlv. We traverse each tree via depth first search, and execute the program in Figure 1
whel first visiting node q.

The depth first search visits each node once. Since the graph is bipartite, row nodes and
colunin niodes alternate, so the parent of a row node is a column node and vice versa. Since
each node is visited once, the above program is executed once for each edge in the tree, i.e.
once for each nonzero entry Aii, corresponding to the edge connecting nodes ri and ci . Thus
each D,-.,i and D,,jj is set exactly once. Since the ij entry of DADc is DriiAijDcjj, we
se,. immediately from the way Dr,11 and Djj are defined that this quantity is 1 if Aij 0 0
(and 0 otherwise). Since each Ai, is used once during the graph traversal, each Dr,i and

4



/).0 must be be a quotient of monomials. If Aij is first used in Dr,ii, then the formulas in

the above program and the fact the row and column nodes alternate mean that A0, will only
appear in denominators of entries of D, and numerators of entries of D,. Alternatively, if
.-4, is first used in Dcjj, then Agj will only appear in denominators of entries of D, and
nmmerators of entries of D,. D

The rest of the proof mimics that of [4, Thm. 1]. Let E be the matrix of ones and zeros
with sparsity S, so that D,ADC = E. Write D7 = S71D] where ]DrI is the matrix of absolute
values of D,., and S7 is a diagonal matrix with ISrI = I. Similarly write D, = S¢IDI. Then

A = DT'1ED,'1 = S 1ID,I- 1EIDI-S;' = $7 IAIS'il

so that A is related to JAI be pre- and postmultiplication by diagonal orthogonal matrices.
lii particular. A and IAI have the same singular values. We will henceforth assume without
loss of generality that A is nonnegative and so D, and D, are also nonnegative.

It is known that the singular values of A are the same as the positive eigenvalues of the
pencil

AT 0

which are in turn the same as the positive eigenvalues of the equivalent symmetric definite
pencil, 0 ID A 0 D 0 D0 DD 2

Now suppose we perturb A by changing nonzero entry Ai, to PAij, resulting in the
perlurbed inatrix A'. Apply the algorithm in Lemma 1 to compute a new D' and D'. Since
bv Leiinnia I the entries of D' and D' are quotients of monomials where each independent
factor appears at most once, each entry Drkk must equal either Dr,kk, 3Dr,kk or 1- 1 D,,kk.
Xi\ analogous statement about D',kk and Dc,kk is true. Since a factor Aii must appear either

in nuinerators of D, and denominators of Dc, or in denominators of D, and numerators of
,. we have two cases:

ir ,kk Dkk or Dkk D,kk, and either D',kk = Dc,kk or D,kk =-D.

2. Either D'kk = Dr,kk or Drkk = 3- 1 D,kk, and either D',kk = or Dk =

Note we may multiply D, by any nonzero -1 and divide D, by y without changing the
fact that D,.ADc = E. Corresponding to the above two cases, we

1. divide Dr by IJJ'/ and multiply Dc by 1011/2, or

2. divide D, by 11'/2 and multiply D, by I1,1/ 2.

The end result will be D' and D' matrices each of whose entries differs from the corre-
.sponding entry of D7 and D, by factors of ]01*1/2. In particular, this implies

1/,3 xTD,2 x < 131 zTD 2 x <
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for any nonzero vector x. Let D' = diag (D',D') as we above defined D = diag (D1 ,D 2).
"Illhell

y T D2 y
y3 T rD 12y <11

for any nonzero vector y. We may now apply [4, Lemma 2] to conclude that

zTFz
ak(A) = min max

Sk x E S k  zTD2z

IIX112= 1

xT Fx

ak(A') = min max Ttx
S' X E S k  XTD,2X

IIXI12 = 1

where the minima axe over all k + max(n,m) dimensional subspaces Sk, can differ by no
more than a factor of 3. This proves that Property 1 implies Property 3.

Lemma 2 Let A have sparsity pattern S, and let all its nonzero entries be independent
i.ndctdriiuates. Then G(S) is acyclic if and only if all minors of A are either 0 or mono-
1ilbI.

Proof We begin by noting that to each term in the determinant of an s by s square
matrix ,I corresponds a unique perfect matching in graph G(M). This is because each
fervi in the determinant corresponds to a choice of s rntries of M located in disjoint rows
ialid columns, and each such choice of s entries selects a perfect match in G(M).

Now suppose a square submatrix M of A has at least two terms in its determinant.
Ihese correspond to two different perfect matchings. Take the symmetric difference of the

edges in these matchings. This symmetric difference forms a cycle, which we get by following
edtgc., offlh the t matchings in alternation. Thu- G(M) contains a cycle, and so must G(A)
silce it includes G(M).

Now suppose G(A) contains a cycle. Assume without loss of generality that it is a simple
cycle. i.e. it is connected and visits each node once. Let M by the corresponding square
submatrix. This cycle determines two perfect matchings in G(M), consisting of alternate
edges of the cycle. This means det(M) has at least two terms. 0

To prove that Property 2 implies Property 1, we will show the contrapositive. So assume
G(A) contains a cycle, and let M be an s by s submatrix whose determinant has at least
2 terns. This means we may choose all the entries of M to be nonzero but such that
.11 is exactly singular. Thus its singular values include at least one which is exactly zero.
Scale M so that its entry of smallest absolute value is 1, and let a = JIMi 2 > 1. Now let
.4( ,l. q) denote the matrix with sparsity S, submatrix M, and other nonzero entries equal
Io il. Then A(M,O) will have at least min(m,n) - s + 1 zero singular values, min(m,n) - s
from the zero rows and columns outside M, and 1 from the singularity of M. By standard
perturbation theory A(M, i7) will have at least min(m, n) - s + 1 singular values no larger
than mni. Now change a smallest entry of M from 1 to 1 + z to get Mx; thus x is also the
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relative change in this entry. Then I det(M)I > x, and so cit(Mz) a .x/( + x) - 1 . This
ieals aor A(M., ii)) > IxI/(a + x) ' + ' - mrn7, whereas a.(A(M, 1})) < mni}. Thus

a, (A(M,77)) > T) -nl'= _ - 1

o'(A(M,r})) - mni7 mn77(o + x)s+l

If Property I held, then we would be able to find c0 > 0 and C > 0 such that for all
0 < xr < o and q > 0 the following inequality would hold:

x

mnr (o + )s+ 1

Since we can make qj as small as we like, this inequality cannot hold for any finite C. Thus
Property 2 cannot hold. This completes the proof that Property 2 implies Property 1, and
.,, also completes the proof of Theorem 1.

4 A bisection algorithm for computing eigenvalues with
tiny backward error

Lel --, denote the machine precision. We will assume the usual model of floating point
,rror. fl(a, b) = (a 0 b)(1 + 6) with 61 < EM,, and assume neither underflow nor overflow
oiccur. (Of course. a practical algorithm would need to account for overflow. This can
1w done atalogously to the way overflow is accounted for in standard tridiagonal bisection
[1:1].)

I thik section we will show how to compute the eigenvalues of a symmetric acyclic
niarix T" with tiny componentwise relative backward error. Our main result is

Theorem 2 Ahe algorithm in Figure 2 computes count(T, x), the number of eigenvalues of
1 k., t1tt .r. with a backward error 6T with the following properties:

JH .,[ I< (1.5 v + 2.5)cmITI when i $ j.

IbT,,I _< (2v + 2)eM IxI.

lt r( r < ii - 1 is the maximum degree of any node in the graph of T. In other words, the
,.oipatud count(T. x) is the exact value of count(T + 6T, x) where 6T is bounded as above.

This is essentially identical to the standard error analysis of Sturm sequence evaluation
for symmetric tridiagonal matrices [9, Sec. 61 (13] (this is stronger than the result in (20, p.
:3031).

Our algorithm simply performs symmetric Gaussian elimination on T - xl: P(T -
.rl)pT = LDLT where P is a permutation matrix, L is unit lower triangular and D is
diagonal. Then count(T,x) is simply the number of negative diagonal entries of D, by
S*vlvester's Inertia Theorem [16]. The order of elimination is the same as a postorder
I ra% ersal of the nodes of the acyclic graph. Since leaves, which have degree 1, are eliminated
first. there is no fill-in during the elimination, and all off-diagonal entries Li3 of L can be
computed by simply dividing Li0 = Toj/Djj.

7



Figure 2: Computing count(T, z)

call cnt(i,d,s,x) where i is any node 1 < i < n
returi count(T, x) = s

procedure cnt(i, d, s, x)
/' i and x are input parameters, d and s are output parameters *1
d= Tii - r
.= 0
for all children j of i do

call cnt(j, d, s', x)
d = d - rld

= + ,s
emd for

if d < 0, then s = S+ 1
return d and s

end procedure

We a., uie the graph G'(S) is connected, since otherwise the matrix can be reordered to
he block diagonal (one diagonal block per connected component of G'(S)), and the inertia
of each diagonal block can be computed separately. The algorithm cnt(i, d, s, z) in Figure 2
assulies the matrix is stored in graph form. Subroutine cnt(i,d,s,x) does a postorder
traversal of the acyclic graph G'(S), and may be called starting at any node 1 _< i < n. In
addition to i. x is an input parameter. The variables d and s are output parameters; on
return , is the desired value of count(T,x).

To prove Theorem 2, we will exploit the acyclicity of T to show that each computed
quaItity and original entry of T is used (directly) just once during the entire computation,
dud then use this to "push" the rounding error back to the original data.

We see that each entry of T is used just once as follows. Tii is only used when visiting
node i, and Tij is used only once, when visiting i if j is a child of i or when visiting j if i is
it child of j in the postorder traversal tree.

Now denote the d computed when visiting node i by d,. The floating point operations
performed while visiting node i are then

di =fI( TZ-x (4.1)
all children di

j of i

'l'o analyze this formula, we will let subscripted c's denote independent quantities
bounded in absolute value by cm. We will also make standard approximations like

+ )±1(l + 2)*1 = 1 + 2E3.

8



Since we do not know the number of terms or the order of the sum in equation (4.1), we
will inake the worst case assumption that there are v < n- I terms where v is the maximum
degree of aiiy node in the graph G'(S). This leads to

(1 + (v + l)Eia )T:- (1 + (v + l)Eib)X - ] (1 + (v + 3)Eij)-!- (4.2)
all chil. :en

j of t

, +T- x + (2v + 2)z1jx - z ((1 + (v + 2)Ej,)Ti) 2  (4.3)

all children
j of i

Let b, w ilie roundoff error corresponding to sEi, committed when computing dj. Then

( -_ = T - x + (2v + 2)-icx - : ((1 + (1.5v + 2.5)Eij,,)Tij) 2 (4)
+ all children dj/(1 + (v + 1)ea)

jof i

t~,fi nall.

,I = Tij -. r + (21, + 2) 2, x - ((1 + (1.5v + 2.5)eij,,)Tj) 2  (4.5)

all children 
a

j of i

where di/(I - i). Equation (4.5) tells us that the d' are the exact diagonal entries of
1) in P(T+ 6T - xI)PT LDLT . Since they obviously have the same signs as the di, this

lirov C Tieorem 2.
The proof depends strongly on there not being any fill-in and on each off diagonal entry

l)eing computable by a single division. Since these properties hold if and only if the graph
(;'(]I') is symmetric acyclic, we strongly suspect that this is the only class of matrices whose
vigeivalues can always be computed with tiny ccmponentwise relative backward error.

We now apply Theorem 2 to compute singular values of acyclic matrices to high relative
accuracy. So suppose B is a matrix whose graph G(B) is acyclic. Consider the symmetric
i at irix I

A I= BT 0

It ii w(, known that the positive eigenvalues of A are the singular values of B. It is
also iuniediate that the graph G'(A) = G(B). Therefore B is acyclic if and only if A is
Yvumietric acyclic. so we can apply the above algorithm to compute all B's singular values

to high relative accuracy.
One other algorithm is worth mentioning. If 4 is symmetric positive definite and sym-

metric acvclic, then its Cholesky factor L is acyclic, has the "lower half" of tha sparsity
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pattern of A. and may be computed by using algorithm cnt. It may occasionally be more
accurate to compute A's eigenvalues by first computing L, computing its singular values by
bisection. and then squaring the singular values to get A's eigenvalues [4]. This is the case,
for example, for the tridiagonal matrix with 2's on the diagonal and l's on the off-diagonal.

5 Examples

We give various examples of acyclic sparsity patterns, beginning with acycic G(S). Given
anty acyclic sparsity pattern, others can be generated either by permuting rows and/or
coluin.ln, or by adding more zeros. Since all square acycic matrices have monomial (or
zero) determinants, this means we can permvte them to be upper triangular. In addition
to bidiagona] matrices, some other examples are

X Xr
r X
x 3:

x x and
x X

X:
: X

To get symmetric acyclic matrices A, one can always take an acyclic B and set[0 B1
.1= B 1 0 - AI. Some other examples are

x x
X: X

X X and
X X X

:X XX
X X X

6 Algorithms and Open Problems

In [8 a perturbation theorem for singular vectors of bidiagonal matrices is proven, which
shows that the appropriate condition number for the i-th singular vector is the reciprocal
of the relative difference between the i-th singular value and next closest one. It would be
interesting to extend this to the acyclic case.

Given the perturbation theory, it would be nice to compute the singular vectors as
accurately as they deserve. A natural candidate is inverse iteration, but even in the simple
case of symmetric tridiagonal matrices, open problems remain. In particular there is no
absolute guarantee that the computed eigenvectors are orthogonal, although in practice the
dlgorithm can be made quite robust (11].

In the "extreme" cases of tridiagona and arrow matrices, we know how to compute the
inertia ini O(log n) time, using the so-called parallel-prefix algorithm in the tridiagonal case
[17.19] . and more simply in the arrow case. The stability in the tridiagonal case is unknown,

10



but in practice it appears to be stable. We can extend this to the general symmetric acylic
case iii two ways. First, the tree describing the expression whose final value is di has at most
n leaves. From [61 we know any such expression tree can be evaluated in at most 4 log2 n
parallel steps, although stability may be lost. Another approach, which includes parallel
prefix and the algorithm in [15) as special cases, is based on [14]. The idea is to simply
evaluate the tree greedily, summing k leaves of a single node in 0(log 2 k) steps whenever
possible. and collapsing a chain of k nodes into a single rode via parallel prefix in O(log 2 k)
steps whenever possible. If we could understand the numerical stability of parallel prefix,
we could probably analyze this more general scheme as well.

Divide and conquer [7,10,18,12] has been widely used for the tridiagonal eigenproblem
and bidiagonal singular value decomposition. This can be straightforwardly extended to
the acyclic case. In terms of the tree, just remove the root by a "rank one tearing", solve
the independent child subtrees recursively and in parallel, and merge the results by solving
the secular equation [21]. Any node can be the root, and to be efficient it is important that
no subtree be large. In the tridiagonal case, there are always two subtrees of nearly equal
size. lI a general tree one can only make sure that no subtree has more than half the nodes
of the original tree (this is easily done in O(n) time via depth first search).

QR does not appear to extend beyond the tridiagonal case. The case of arrow matrices
was analyzed in [2], where it was shown that no QR algorithm could exist. A simpler proof
arises from noting that two steps of LLT is equivalent to one step of QR in the positive
definite case. and so the question is whether the sparsity pattern of T = LLT is the same
as that of T1 = LTL; this is easily seen to include only tridiagonal To.
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